Abschnitt 1

1. Allgemeines
1.1 Einführung
1.2 Zulassungsbasis
1.3 Hinweistellen
1.4 Beschreibung und technische Daten
1.5 Dreiseitenansicht
1.1 Einführung

1.2 Zulassungsbasis

Der Musterzulassungsschein trägt die Nr. 04.858. Luftfahrtsicherheitsgruppe ist "U". U steht für Utility und trifft für Segelflug- zeuge und Motorsegler zu, die für normalen Segelflug verwendet wer- den.

Ausgabe: Juni 1987 M. Hilde
Änderung: TM 16 Sept. 2000 M. Hilde

1.2
2.3 Fahrtmessermarkierungen

Die folgende Tabelle nennt die Fahrtmessermarkierungen und die Bedeutung der Farben.

<table>
<thead>
<tr>
<th>Markierung</th>
<th>(IAS) [km/h] Wert oder Bereich</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weißer Bogen</td>
<td>84 - 160</td>
<td>Betriebsbereich für positive Klappenausschläge</td>
</tr>
<tr>
<td>Grüner Bogen</td>
<td>91 - 185</td>
<td>Normaler Betriebsbereich (Flügelklappen neutral)</td>
</tr>
<tr>
<td>Gelber Bogen</td>
<td>185 - 285</td>
<td>In diesem Bereich darf bei starker Turbulenz nicht geflogen und Manöver dürfen nur mit Vorsicht durchgeführt werden</td>
</tr>
<tr>
<td>Roter Strich</td>
<td>285</td>
<td>Zulässige Höchstgeschwindigkeit für alle Betriebsarten</td>
</tr>
<tr>
<td>Gelbes Dreieck</td>
<td>100</td>
<td>Anfluggeschwindigkeit bei Höchstmasse ohne Wasserballast</td>
</tr>
<tr>
<td>Blauer Strich</td>
<td>95</td>
<td>Geschwindigkeit des besten Steigens v_s</td>
</tr>
</tbody>
</table>

Ausgabe: Juni 1997 M. Heide
Änderung: LBA-anerkannt

2.5
2.4 Triebwerk

Motorhersteller: Mid-West Aero Engines
Motor: AE60R
Höchstleistung, Start: 37 kW (für 6 Minuten) 7600 1/min
Dauerbetrieb: 34,6 kW 6900 1/min
Höchstzulässige Startdrehzahl: 7500 1/min
Höchstzulässige Dauerdrehzahl: 6900 1/min
Höchstzulässige Überdrehzahl (20 Sek.): 7800 1/min
Höchstzulässige Kühlmitteltemperatur: 107 °C
Höchstzulässige Kühlmitteltemperatur, Start: 90 °C
Geringste Kühlmitteltemperatur, Start: 60 °C
Höchstzulässige Rotorkühlluft-Temperatur: 125 °C

Schmierstoff: Verlust-Ölgeschmierung
Verbrauchsverhältnis: etwa 1:60

Getriebe: Zahnriemengetriebe mit Untersetzung 1:2,78

Nachfolgende Propeller sind zugelassen:

Hersteller: Alexander Schleicher GmbH
Propeller: AS2F1-1/R153-92-N1

2.6
am nötigsten gebraucht wird, ist auch der Motor und seine Zuverlässig-
keit zu betrachten. Die Motoren für Motorsegler sind nicht ganz so
strengen Bau- und Prüfvorschriften unterworfen wie normale Flugmoto-
ren, demzufolge kann auch keine so große Zuverlässigkeit erwartet
werden. Eine Mindesthöhe zum Ausfahren des Propellers und Anlassen des
Triebwerks muß eingehalten werden. Die muß so gewählt werden, daß es
möglich ist, den Propeller wieder einzufahren und eine Außenlandung
einzuleiten, falls das Triebwerk nicht gestartet werden kann. Ein allge-
meingültiger Wert dieser Mindesthöhe sollte mit etwa 300m angesetzt
werden, er ist aber auch stark vom Pilotenvermögen und den geogra-
phischen Gegebenheiten abhängig.

(1) Ausfahren des Propellers
Vorgang nach Checkliste.
Propeller nicht unter erhöhter g-Belastung ausfahren. Zum Beispiel kann
die g-Belastung im Kreisflug so groß werden, daß die elektrische Aus-
fahrspeil den Propeller nur noch sehr langsam oder nicht vollständig
ausführt. Die Geschwindigkeiten zum Ein- und Ausfahren des Propellers sind in
Abschnitt 2 angegeben.

(2) Anlassen des Triebwerks

Warnung: Ein Probelauf des Triebwerkes ohne montierte Flügel und
entsprechend sicher fixiertem Flugzeug darf unter keinen
Umständen durchgeführt werden! Zum Probelauf muß im
Cockpit immer eine sachkundige Person sitzen.

Wichtiger Hinweis: Vor dem Start sollten entsprechend den Angaben
in Abschnitt 5 dieses Handbuchs die örtlichen
Gegebenheiten für einen sicheren Start überprüft
werden.

Ausgabe: Juni 1997 M. Heide
Änderung: LBA-erkannt

4.15
Vorgang nach Checkliste.

 Am Boden sollte das Triebwerk bei 4000 U/min 3 bis 4 Minuten warm- laufen, bis die Anzeige der Kühlmitteltemperatur anspricht und etwa 40 °C anzeigt. Dadurch wird sichergestellt, daß der Motor sich zügig auf maximale Drehzahl beschleunigen läßt.

 Bei Temperaturen unter -10 °C sollte das Triebwerk nicht angelassen werden, da bei völlig ausgekühltem Motor die Gefahr besteht, daß das Schmieröl zu dickflüssig ist und die Ölzufuhr in den Motor dadurch unterbrochen wird.

 (3) Eigenstart

 Um einen sicheren Eigenstart durchführen zu können, sollte im Stand eine maximale Motordrehzahl von mindestens 7000 U/min erreicht wer- den. Bei geringeren Drehzahlen muß mit einer Vergrößerung der in Ab- schnitt 5.2.3 angegebenen Startstrecke gerechnet werden.
Warnung: Werden im Stand nur maximale Motordrehzahlen deutlich unter 7000 U/min erreicht, so darf nicht mehr gestartet werden. Es muß zuerst die Vergaser einstellung überprüft und ein Startlauf durchgeführt werden.

Für Piloten, die noch keine Wöllklappenflugzeuge geflogen haben, wird zum Start und dem Steigflug WK 6 empfohlen.

Die Beschleunigungsphase und das Abheben wird bei unterschiedlichen Startbahneigenschaften wie folgt vorgenommen:

Hartbelagbahn:

In Wöllklappenstellung 2 mit Vollgas beschleunigen, bis durch leichtes Nachdrücken das Spornrad entlastet werden kann. Bis etwa 50 km/h wird so auf dem Hauptrad beschleunigt dann in Wöllklappenstellung 5 gewölt und bei gleichzeitigem, gefühlvollem Ziehen abgehoben. Nach dem Abheben wird auf 1 bis 2 m gestiegen und dann langsam auf vy beschleunigt. Ist eine Sicherheitshöhe von 150 m erreicht, wird in Wöllklappenstellung 4 gewölt. Bei Seitenwind wird aber abweichend davon, zur besseren Richtungsstabilität, das Spornrad durch leichtes Ziehen belastet.

Ausgabe: Juni 1907 M. Heide
Änderung: Tm 16 Sept. 2000 M. Heide

4.17
Weicher Untergrund:
In Wölbklappenstellung 2 bis zum Abheben das Spornrad durch Ziehen am Boden halten um das Hauptrad zu entlasten. So früh wie möglich wird dann in Wölbklappenstellung 5 gewölbt und bei gleichzeitigem, ge- führvollem Ziehen abgehoben. Danach auf 1 bis 2 m Höhe steigen und dann langsam auf vₚ beschleunigt. Ist eine Sicherheitshöhe von 150 m erreicht, wird in Wölbklappenstellung 4 gewölbt.
Die nachgewiesenen Seitenwindkomponenten sind in Abschnitt 5.3.1 angegeben.

(4) Steigflug
Den Steigflug mit einer Drehzahl von maximal 7500 U/min und vy = 95 km/h (blauer Strich am Fahrtmesser) durchführen. Beachten, daß diese Startleistung nur für maximal 5 Minuten erlaubt.

(5) Reiseflug
Entweder im Sägezahnflug (Steigflug und Abgleiten mit eingefahrenem Propeller) oder im Horizontallflug bei 6900 U/min und 120 bis 130 km/h Fluggeschwindigkeit durchführen. Den Kraftstoffvorrat beobachten und gegebenfalls das Ventil der Flügeltanks öffnen.

Wichtiger Hinweis:
Das Ventil der Flügeltanks schaltet nur von selbst ab, wenn sich der Tankschalter in Stellung "automatisch" befindet. Bei manueller Betriebsart wird das Ventil nicht geschlossen, wenn der Rumpftank voll ist und der Kraftstoff geht über die Entlüftung verloren! Deshalb ist die Kraftstoffanzeige zu beobachten und das Flügeltankventil rechtzeitig zu schließen.

Wichtiger Hinweis:
Bei Verwendung von Flügeltanks kontrollieren, ob der Ölverbrauch für die gesamte Kraftstoffmenge ausreicht. Ölkontrolleuchte beobachten!
Beispiel (-----):
m = 750 kg
Wölbklappenstellung = WK 3
Querneigung = 45°
\(V_{Abklop} \approx 7 = 96 \text{ km/h} \)
5.2.3 Startstrecken

Die angegebenen Startstrecken gelten für Starts auf harter, ebener Grasfläche und bei einwandfreiem Zustand von Triebwerk, Luftschraube und Flugzeug für folgende Bedingungen:

- Flugplatzhöhe: 0 m NN
- Temperatur: 15 °C
- Luftdruck: 1013 hPa
- Startmasse (mit Wasserballast): 790 kg
- Fluggeschwindigkeit in 15m Höhe (v_{rel}): 100 km/h

Ab 15m Flughöhe auf $v = 95$ km/h verzögern.

<table>
<thead>
<tr>
<th>Startrollstrecke:</th>
<th>405 m</th>
<th>280 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startstrecke bis auf 16 m Höhe:</td>
<td>660 m</td>
<td>420 m</td>
</tr>
</tbody>
</table>

Der Einfluss von Lufttemperatur und Luftdruck (Flughöhe) auf die Startstrecke ist in der Startstreckentabelle angegeben (siehe 5.2.3.1).

Wichtiger Hinweis: Bei Regen (nassem Flügel), Reif- oder Eisansatz verschlechtert sich die Aerodynamik des Flugzeuges erheblich. Es darf nicht gestartet werden! Zuerst die Flügel und Leitwerke säubern!

Rückenwind und ansteigende Startbahnen erhöhen die Startstrecken erheblich. Die Möglichkeit eines Startabbruchs muß bedacht werden, siehe dazu auch in Abschnitt 4.5.1 den Punkt (3) Eigenstart.

LDA-erkannt

Ausgabe: Juni 2007 M. Holle
Änderung: TM 16 Sept., 2000 M. Holle

5.6
5.2.3.1 Startstrecken-Tabelle

Wichtiger Hinweis: Für andere Startbahn-Oberflächen, wie zum Beispiel feuchter Grasboden, aufgeweichter Untergrund, hoher Grasbewuchs, Schneereste, stehen des Wasser u.ä., die nicht in der Tabelle angegeben sind, wird empfohlen im Luftfahrthandbuch (AIP), Band 1, die dort aufgeführten prozentualen Zuschläge für diese Startrollstrecken zu entnehmen!

Die nachfolgende Tabelle gibt Werte für verschiedene Flugplatzhöhen und Temperaturen an:

- \(S_{r} \) = Startrollstrecke
- \(S \) = Startstrecke bis auf 15 m Höhe

Startmasse = 790 kg

<table>
<thead>
<tr>
<th>Flugplatzhöhe über NN [m]</th>
<th>Temperatur [°C]</th>
<th>(S_{R}) [m]</th>
<th>(S) [m]</th>
<th>(S_{W}) [m]</th>
<th>(S) [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-15</td>
<td>208</td>
<td>313</td>
<td>301</td>
<td>409</td>
</tr>
<tr>
<td>0</td>
<td>-10</td>
<td>243</td>
<td>364</td>
<td>351</td>
<td>477</td>
</tr>
<tr>
<td>0</td>
<td>-5</td>
<td>290</td>
<td>420</td>
<td>405</td>
<td>550</td>
</tr>
<tr>
<td>0</td>
<td>+30</td>
<td>321</td>
<td>481</td>
<td>464</td>
<td>630</td>
</tr>
<tr>
<td>500</td>
<td>-15</td>
<td>245</td>
<td>367</td>
<td>354</td>
<td>485</td>
</tr>
<tr>
<td>500</td>
<td>-10</td>
<td>280</td>
<td>427</td>
<td>412</td>
<td>559</td>
</tr>
<tr>
<td>500</td>
<td>-5</td>
<td>328</td>
<td>492</td>
<td>475</td>
<td>645</td>
</tr>
<tr>
<td>500</td>
<td>+30</td>
<td>376</td>
<td>564</td>
<td>543</td>
<td>738</td>
</tr>
<tr>
<td>1000</td>
<td>-15</td>
<td>297</td>
<td>431</td>
<td>416</td>
<td>569</td>
</tr>
<tr>
<td>1000</td>
<td>-10</td>
<td>334</td>
<td>501</td>
<td>493</td>
<td>657</td>
</tr>
<tr>
<td>1000</td>
<td>-5</td>
<td>386</td>
<td>579</td>
<td>557</td>
<td>757</td>
</tr>
<tr>
<td>1000</td>
<td>+30</td>
<td>441</td>
<td>661</td>
<td>637</td>
<td>866</td>
</tr>
<tr>
<td>1500</td>
<td>-15</td>
<td>338</td>
<td>507</td>
<td>489</td>
<td>684</td>
</tr>
<tr>
<td>1500</td>
<td>-10</td>
<td>393</td>
<td>589</td>
<td>568</td>
<td>772</td>
</tr>
<tr>
<td>1500</td>
<td>-5</td>
<td>453</td>
<td>679</td>
<td>655</td>
<td>889</td>
</tr>
<tr>
<td>1500</td>
<td>+30</td>
<td>518</td>
<td>779</td>
<td>749</td>
<td>1017</td>
</tr>
<tr>
<td>2000</td>
<td>-15</td>
<td>398</td>
<td>598</td>
<td>576</td>
<td>783</td>
</tr>
<tr>
<td>2000</td>
<td>-10</td>
<td>463</td>
<td>694</td>
<td>668</td>
<td>909</td>
</tr>
<tr>
<td>2000</td>
<td>-5</td>
<td>533</td>
<td>798</td>
<td>771</td>
<td>1046</td>
</tr>
<tr>
<td>2000</td>
<td>+30</td>
<td>609</td>
<td>913</td>
<td>881</td>
<td>1156</td>
</tr>
</tbody>
</table>

Ausgabe: Juni 1997, M. Heide

Änderung: TM 16 Sept. 2000, M. Heide

5.7
5.2.4 Flugleistungen bei laufendem Triebwerk

Steigraten:

Auf Meereshöhe und Normalatmosphäre bezogen besitzt die ASH 25 M eine Steigrate von 2,25 m/s bei der Geschwindigkeit des besten Steigens von \(v_s = 95 \text{ km/h} \).

Reiseflug:

Die Reisefluggeschwindigkeit \(v_r \) beträgt 120 km/h bei 6900 U/min.

Reichweite:

bei vollem Rumpftank beträgt die Motorauflaufzeit etwa 30 min wenn der Steigflug 5 Minuten mit 7500 U/min danach mit 6900 U/min durchgeführt wird. Die Steigfluggeschwindigkeit beträgt \(v_{st} = 95 \text{ km/h} \). In dieser Stunde werden etwa 47 km Strecke geflogen und eine theoretische Flughöhe im Sägeschwanzflug von 2500 m erreicht. Wird diese Höhe bei bestem Gleiten abgelaufen, so addieren sich zu den 47 km weitere 145 km. Die maximale Reichweite beträgt dann 192 km unter folgenden Bedingungen:

- Steigwert bei 7600 U/min, mittlere Flughöhe 500 m,
- Standardtemperatur von 2,3 m/s,
- Steigwert bei 6900 U/min, mittlere Flughöhe 1500 m,
- Standardtemperatur von 1,2 m/s,
- Maximales Abfluggewicht.

Treibstoffverbrauch von 15,5 l/h (5 Min bei 7500 U/min und 25 Min bei 6900 U/min).

Die Vergasereinstellung, Kraftstoffsorte und aerodynamischer Zustand des Flugzeugs können dieses Ergebnis aber wesentlich beeinflussen. Deshalb sollte dieses Beispiel nur zur Orientierung dienen.

Sind Treibstoffanks in den Flügeln eingebaut, so erhöht sich die verfügbare Treibstoffmenge um je 15 Liter je Tank.

LBA-erkannt
Ausgabe: Juni 1967 M. Heide
Änderung: Tm 16 Sept. 2000 M. Heide

5.8
Wird der Reiseflug bei \(v_f = 120 \text{ km/h} \) und einer Leistung von 6900 U/min durchgeführt, so wird bei einem Verbrauch von 9,7 l/h eine Flugzeit von 45 Minuten aus dem vollen Rumpftank erzielt. Dies ergibt eine Reichweite von 90 km. Ein Höhengewinn, der abgeglitten werden kann, wird nicht erzielt. Kraftstoff zum Wärmaufbau und Rollen wurde nicht abgezogen.

5.3 Zusätzliche Informationen

5.3.1 Nachgewiesene Seitenwindkomponenten

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Geschwindigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start mit Triebwerk</td>
<td>15 km/h</td>
</tr>
<tr>
<td>Winden- und Autoschieppstart</td>
<td>20 km/h</td>
</tr>
<tr>
<td>Flugzeugschiepp</td>
<td>20 km/h</td>
</tr>
<tr>
<td>Landung</td>
<td>20 km/h</td>
</tr>
</tbody>
</table>

5.3.2 Geschwindigkeitspolaren

Die Geschwindigkeitspolare wurde von der DLR-Idaflieg am 26.09.86 in Aalen durch Vergleichsflug ermittelt.

Ausgabe: Juni 1997 M. Härle
Änderung: TM 18 Sept. 2000 M. Heide

5.9
5.3.2-1 Geschwindigkeitspolaren
5.3.4 Lärmwerte

Überfluggeräuschemission gemäß Kapitel 10 der Bekanntmachung der "Lärmschutzforderungen für Luftfahrzeuge (LSL)" vom 01.01.1991.

Ermittelter Geräuschpegel:

66,1 dB(a)

Lärmgrenzwert:

LSL: 72,9 dB(A)

ICAO: 79,9 dB(A)
Höhenleitwerk
Spannweite 3,125 m
Fläche 1,27 m²
Streckung 7,69
Profil Wortmann FX 71-L150/30 mit 12 % Dicko

Höhenruder
Rudertiefenverhältnis 30 %
Fläche 0,381 m²

Bremsklappen (Schempp-Hirth nur auf Oberseite)
Länge 1,20 m
Fläche (beide) 0,336 m²
Höhe 0,15 m

Triebwerk
Motorhersteller: Mid-West Engines Ltd.
Motor: AE50R
Höchstleistung, Start: 37 kW (für 5 Min.) 7500 1/min
Dauerbetrieb: 34,6 kW 6900 1/min
Höchstzulässige Startdrehzahl: 7500 1/min
Höchstzulässige Dauerdrehzahl: 6900 1/min
Höchstzulässige Überdrehzahl: (20 Sek.) 7800 1/min
Höchstzulässige Kühlmitteltemp.: 107 °C
Geringsle Kühlmittelemp., Start: 90 °C
Höchstzulässige Rotorkühlfluft-Temp.: 125 °C
Schmierstoff: Verlust-Ölgeschmierung
Verbrauchsverhältnis etwa 1:60
Getriebe: Zahnriemengetriebe mit Unter-
setzung 1 : 2,78

Ausgabe: Juni 1967 M. Hilde
Änderung: TM 16 Sept. 2000 M. Hilde

1.5
Nachfolgende Propeller sind zugelassen:
Hersteller: Alexander Schleicher GmbH
Propeller: AS2F1-1/R153-92-N1

<table>
<thead>
<tr>
<th>Massen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Leermasse</td>
<td>ca. 565 kg</td>
</tr>
<tr>
<td>Zuladung</td>
<td>180 kg</td>
</tr>
<tr>
<td>Masse der nichttragenden</td>
<td>460 kg</td>
</tr>
<tr>
<td>Teile max.</td>
<td></td>
</tr>
<tr>
<td>max. Flugmasse</td>
<td>790 kg</td>
</tr>
<tr>
<td>Flächenbelastungen</td>
<td>39,5 - 48,4 kg/m²</td>
</tr>
</tbody>
</table>

Ausgabe: Juni 1997 M. Heide
Änderung: TM 16 Sept. 2000 M. Heide
Propeller
Entsprechend den Angaben in der technischen Mitteilung 2 für AS-Propeller unterliegt der AS2F1 einer Betriebszeitbeschränkung.

Kraftstoffschläuche

Flexible Kraftstofftanks im Flügel

CFK-Auspußverkleidung

Nur gültig für U.S. registrierte Flugzeuge:
4.3 Einschränkung der Lufttüchtigkeit
Der Abschnitt über die Einschränkung der Lufttüchtigkeit ist für U.S. registrierte Flugzeuge FAA anerkannt.

In addition, this section is required by FAA Type Certificate Data Sheet Number G09CE and in accordance with the provisions of 14CFR Sections 43.16 and 91.403.
<table>
<thead>
<tr>
<th>And.-Nr. der Berichtigung</th>
<th>Betroffene Seite</th>
<th>Beschreibung</th>
<th>LBA-erkannte Unterschrift</th>
<th>Datum der Änderung</th>
</tr>
</thead>
</table>

Ausgabe: 4.6
Änderung: 4.6
5.3 Tabelle der Schraubenanzugsmomente

Tabelle der maximal erlaubten Anzugsmomente von Schrauben für Standardverbindungen.
Diese Angaben gelten ebenfalls für Verschraubungen an der Triebwerkeinheit, allerdings nicht für den eigentlichen Motor AE50R, die Nutmuttern an Propeller- und Antriebswelle, die radialen Schrauben an der Centaflex-Gummikupplung am Riemenantrieb und die sechs Schrauben am Propeller.

Ausgabe: Juni 1987 M. Hettin
Änderung: 5.5
<table>
<thead>
<tr>
<th>Gewinde</th>
<th>daNm (mkp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M4</td>
<td>0,18</td>
</tr>
<tr>
<td>M5</td>
<td>0,36</td>
</tr>
<tr>
<td>M6</td>
<td>0,64</td>
</tr>
<tr>
<td>M8</td>
<td>1,60</td>
</tr>
<tr>
<td>M10</td>
<td>3,20</td>
</tr>
<tr>
<td>M12</td>
<td>5,70</td>
</tr>
<tr>
<td>M14</td>
<td>9,20</td>
</tr>
</tbody>
</table>

Schraubenanzugsmomente der Nutmuttern an Propellerwelle und Antriebswelle:

<table>
<thead>
<tr>
<th>Gewinde</th>
<th>daNm (mkp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M24*1,5 Propellerwelle</td>
<td>15,0</td>
</tr>
<tr>
<td>M30*1,0 Propellerwelle</td>
<td>12,0</td>
</tr>
<tr>
<td>M30*1,5 Antriebswelle</td>
<td>12,0</td>
</tr>
<tr>
<td>M20*1,5 Antrieb/Motor</td>
<td>12,0</td>
</tr>
</tbody>
</table>

Schraubenanzugsmomente der radialen Schrauben an der Centaflex-Gummikupplung am Riemenantrieb:

<table>
<thead>
<tr>
<th>Gewinde</th>
<th>daNm (mkp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M10</td>
<td>5,0</td>
</tr>
</tbody>
</table>

Schraubenanzugsmomente des Motors AE50R:

siehe Motorhandbuch Anhang 4!

Tabelle der Schraubenanzugsmomente des Propellers:

siehe Propellerhandbuch Abschnitt 7!

Ausgabe: Juni 1997 M. Heide
Änderung: TM 16 Sept. 2000 M. Heide

5.6
erhält man den Punkt P2c im Diagramm bei einer Mindestzuladung von etwa 90 kg im vorderen Sitz.

Im Cockpit muß im DATENSCHILD und TRIMPLAN eine Mindestzuladung von 90 kg (Pilot mit Fallschirm) eingetragen und das Zusatzzschild angebracht werden!

Niedrigere Mindestzuladung ohne
Trimmballast in der Seitentflosse
siehe Flughandbuch Seite 6.4

(2c) Für dieses Flugzeug könnte nun an Stelle des Trimmballastes in der Seitentflosse ein Höhenschreiber in der Halterung im Motorraum berücksichtigt werden. Es kann nun neu gewogen werden, oder es wird wie nachfolgend eine Korrekturrechnung durchgeführt.

\[x_{\text{LHS}} = \frac{x_{\text{L}} m^*_x m^*_x + \sum m_{\text{oh}}} {m_{\text{L}} + m_{\text{oh}}} \]

\[x_{\text{LHS}} = \frac{0.638 \times 565 + 2.14 \times 1.5} {565 + 1.5} = 0.642 \text{ m} \]

Mit diesen Werten:

\[m_{\text{LHS}} = 565 + 1.5 = 566.5 \text{ kg} \]

\[x_{\text{LHS}} = 0.642 \text{ m} \]

erhält man den Punkt P2c im Diagramm bei einer Mindestzuladung von etwa 80 kg im Sitz. Im Cockpit muß im DATENSCHILD und TRIMPLAN eine Mindestzuladung von 80 kg (Pilot mit Fallschirm) eingetragen und das Zusatzzschild angebracht werden!

Niedrigere Mindestzuladung ohne
Höhenschreiber im Motorraum
siehe Flughandbuch Seite 6.4

Ausgabe: Juni 1990 / M. Heide
Änderung: 6.11
(3) An Stelle einer rechten Leermassen-Schwerpunktwägung soll der Ausbau eines Triebwerkes und der Motorbatterie rechnerisch berücksichtigt werden:

Der zuletzt gültige Wägegericht gibt folgende Daten an:

\[m_e = 588 \text{ kg aus Wägung aller Bauteile} \]
\[x_c = 682 \text{ mm} \]

Die Massen und Hebelarme von Triebwerk und Motorbatterie können der nachfolgenden Tabelle entnommen werden. Zur Sicherheit sollten die Massen der ausgebauten Teile aber gewogen werden.

Beispielhafte Werte für Triebwerk:

\[m_b = 65.1 \text{ kg und } x_{bu} = 1.206 \text{ mm} \]

Motorbatterien im Flügel werden aus Gewichtsgründen ausgetauscht:

\[m_{test} = 2 \times 3.5 = 7 \text{ kg und } x_{test} = 0.175 \text{ mm} \]

\[x_{vmax} = \frac{m_e \times x_c - m_b \times x_{bu} - m_{test} \times x_{test}}{m_{test} - m_b} \]

\[x_{vmin} = \frac{0.682 \times 588 - 65.1 \times 1.206 - 7 \times (-0.175)}{588 - 65.1} = 310.09 \]

\[x_{min} = 0.6253 \]

\[m_{min} = 495.9 \text{ kg} \]

\[x_{min} = 0.6253 \times 682 = 682 \text{ mm} \]

Mit diesen Werten wird nun im Leermassendiagramm des Motorseglers mit ausgebautem Triebwerk Fig. 6.4-2 überprüft, welche minimale und maximale Zuladung im Cockpit möglich ist. Diese neuen Werte werden, wie im nachfolgenden, beispielhaften Beladeplan, im Beladeplan des Flughandbuches Seite 6.4 durch eine dafür lizensierte Person (z.B. Baulührer eines LTB) eingetragen:

Im Cockpit bleibt im DATENSCHILD und TRIMPLAN die alte Mindestzuladung (Pilot mit Fallschirm) eingetragen und es muß das Zusatzschild angebracht werden!

Niederere Mindestzuladung mit ausgebautem Triebwerk siehe Flughandbuch Seite 6.4

6.12

Ausgabe: Juni 1987 M. Hende
Änderung: TM 16 Sept. 2000 M. Hende
(2) Berechnung der Flugschwerpunktlage

\[x_s = \frac{x_l \cdot m_r + x_{e \nu} \cdot m_{e \nu} + x_{e H} \cdot m_{e H} + x_{c x} \cdot m_{c x} + x_{k q} \cdot m_{k q} + x_{k n} \cdot m_{k n} + x_{k D} \cdot m_{k D} + x_{k B} \cdot m_{k B} + x_{n} \cdot m_{n} + x_{B} \cdot m_{B} + x_{G} \cdot m_{G}}{m_r + m_{e \nu} + m_{e H} + m_{c x} + m_{k q} + m_{k n} + m_{k D} + m_{k B} + m_{n} + m_{B} + m_{G}} \]

Dabei sind:

- \(x_l \) (m) Leermassenschwerpunktlage
- \(m_r \) (kg) Leermasse
- \(x_{e \nu} \) (m) Pilotenhebelarm vorderer Pilot
- \(m_{e \nu} \) (kg) Masse vorderer Pilot mit Fallschirm
- \(x_{e H} \) (m) Pilotenhebelarm hinterer Pilot
- \(m_{e H} \) (kg) Masse hinterer Pilot mit Fallschirm
- \(x_{c x} \) (m) Abstand ab BP des Wasserballastes
- \(m_{c x} \) (kg) Masse des Wasserballastes (1Liter = 1kg)
- \(x_{k q} \) (m) Hebelarm des Kraftstofkes im Rumpftank
- \(m_{k q} \) (kg) Masse des Kraftstoffs im Rumpftank
- \(x_{k n} \) (m) Abstand ab BP der O₂-Flasche bei senkrechtgem Bündel
- \(m_{k n} \) (kg) Masse der O₂-Flasche
- \(x_{k D} \) (m) Rüttelbarograph im Motorraum
- \(m_{k D} \) (kg) Rüttelbarograph der Fa. Gebr. Winter
- \(x_{k B} \) (m) Abstand ab BP der eventuellen Batterie in der Seitenflosse
- \(m_{k B} \) (kg) Masse der Batterie
- \(x_{n} \) (m) Abstand Gepäckraum
- \(m_{n} \) (kg) Masse des Gepäcks im Gepäckraum

Weitere Massen und Hebelarme:

- \(x_{E a} \) (m) Abstand Triebwerk ausgeführt
- \(x_{E a} \) (m) Abstand Triebwerk eingefahren
- \(m_{e \nu} \) (kg) Maschine Triebwerk mit Propeller
- \(x_{m e} \) (m) Masse einer Motorbatterie im Flügel
- \(x_{m B} \) (m) Abstand Motorbatterie im Flügel

Der Kraftstofftank im Rumpf liegt im Schwerpunktbereich und hat keinen spürbaren Einfluss auf die Schwerpunktlage. Die Flügelkraftstofftanks sind wie die Wasserballasttanks angeordnet. Die Masse dieses Kraftstoffanteils kann deshalb wie Wasserballast be- rücksichtigt werden.

Ausgabe: Juni 1997 M. Heide
Änderung: 6.17
Tabelle der festliegenden Hebelarme und Massen:

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Dimenion</th>
<th>Wert</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_{20})</td>
<td>Meter</td>
<td>+0.414</td>
<td>Sperrenfähige Position</td>
</tr>
<tr>
<td>(m_{22})</td>
<td>kg</td>
<td>-4.22</td>
<td>eine Plocho (voll)</td>
</tr>
<tr>
<td>(x_{2W})</td>
<td>Meter</td>
<td>+0.207</td>
<td>Wasserballast ab SP</td>
</tr>
<tr>
<td>(x_{B})</td>
<td>Meter</td>
<td>+5.4</td>
<td>optionale Batterie in Seitenflosse</td>
</tr>
<tr>
<td>(m_{B})</td>
<td>kg</td>
<td>4.0*</td>
<td>optionale Batterie einschiebbar in SF</td>
</tr>
<tr>
<td>(x_{2G})</td>
<td>Meter</td>
<td>+0.18</td>
<td>Gepäck im Gepäckraum</td>
</tr>
<tr>
<td>(x_{K})</td>
<td>Meter</td>
<td>+0.25</td>
<td>Mittlerer Hebelarm des Kraftstoffs im Rumpfbank</td>
</tr>
<tr>
<td>(x_{H1})</td>
<td>Meter</td>
<td>+2.14</td>
<td>Rüttelbarograph im Motorraum</td>
</tr>
<tr>
<td>(m_{H1})</td>
<td>kg</td>
<td>1.5</td>
<td>Rüttelbarograph der Firma Winter</td>
</tr>
<tr>
<td>(x_{H2})</td>
<td>Meter</td>
<td>-2.0</td>
<td>Instrumentenhebelarm im vorderen Instrumententunnel</td>
</tr>
<tr>
<td>(x_{H3})</td>
<td>Meter</td>
<td>-0.85</td>
<td>Instrumentenhebelarm im hinteren Instrumententunnel</td>
</tr>
<tr>
<td>(x_{E1})</td>
<td>Meter</td>
<td>+1.097</td>
<td>Triebwerk ausgefahren</td>
</tr>
<tr>
<td>(x_{E2})</td>
<td>Meter</td>
<td>+1.208</td>
<td>Triebwerk eingefahren</td>
</tr>
<tr>
<td>(m_{E})</td>
<td>kg</td>
<td>66.0*</td>
<td>Triebwerk mit Propeller</td>
</tr>
<tr>
<td>(m_{M1}) (kg)</td>
<td></td>
<td>3.5</td>
<td>Masse einer Motobatterie im Flügel</td>
</tr>
<tr>
<td>(x_{M1}) (m)</td>
<td></td>
<td>+0.175</td>
<td>Abstand der Motobatterie im Flügel</td>
</tr>
</tbody>
</table>

*Genaue Masse der Batterie, des Trimmballasts oder des Triebwerks ermitteln!

Beispiele zur Schwerpunktberechnung:

1. Beispiel einer Leermassen-Schwerpunktwägung:

\[
 x_s = \frac{m_1 \cdot b}{m_2} - a \quad \text{(Siehe Fig. 6.2-1)}
\]

\[
 m_1 = 566.5 \text{ kg aus der Wägung aller Bauteile}
\]

\[
 m_2 = 71.7 \text{ kg}
\]

\[
 b = 5622 \text{ mm}
\]

\[
 a = 43 \text{ mm}
\]

Ausgabe: Juni 1997 M. Heide
Änderung: TM 16 Sept. 2200 M. Heide

6.18
12.4 Liste der Wartungsunterlagen eingebauter Geräte

- Motorhandbuch AE50R Bericht-Nr. (P)002 in der jeweils gültigen Ausgabe.

- Betriebs- und Wartungsanweisungen für den Propeller AS2F1 der Firma Alexander Schleicher in der jeweils gültigen Ausgabe.

oder:

oder:

- WHEEL and BRAKE ASSEMBLIES CATALOGUE Component Maintenance Manual, Appendix A, Fits and Clearances
 A-1, Brake Lining Wear Limits
 A-2, Brake Disc Minimum Thickness
 von Parker Hannifin Corporation, Avon, Ohio

- Einbau- und Prüfanweisung für flexible Kraftstofftanks Zchn.-Nr. 12/89 der Fa. Heimann in der jeweils gültigen Ausgabe

Ausgabe: Juni 1987 M. Heide
Änderung: TM 16 Sept. 2000 M. Heide
12.5 Fahrtmessermarkierungen

Wenn Markierungen auf dem Deckglas des Fahrtmessers angebracht werden, muß dafür gesorgt werden, daß das Deckglas seine richtige Lage gegenüber der Skalenscheibe behält (JAR 22.1543 a).
Alle Dörfer und Gänge müssen breit genug und so angebracht sein, daß sie für den Flugzeugführer deutlich erkennbar sind und nicht Teile der Skalenscheibe verdecken (JAR 22.1543 b).