vernünftige Steigwerte.
Durch die TM 18 wird die Spannweite durch eine ansteckbare Flügelperlängerung mit Winglet erhöht.

Technische Daten:

<table>
<thead>
<tr>
<th>Spannweite</th>
<th>25,0 m</th>
<th>25,6 m</th>
<th>26,0 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rumpflänge</td>
<td>9,0 m</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>Höhe (LW/Heckrad)</td>
<td>1,7 m</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>max. Ablugmasse</td>
<td>750 kg</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>Winglet höhe</td>
<td>---</td>
<td>0,35 m</td>
<td>0,35 m</td>
</tr>
<tr>
<td>Flügeltiefe (mittl. aerodyn.)</td>
<td>0,687 m</td>
<td>0,683 m</td>
<td>0,680 m</td>
</tr>
<tr>
<td>Flügelfläche</td>
<td>16,31 m²</td>
<td>16,46 m²</td>
<td>16,62 m²</td>
</tr>
<tr>
<td>Flächenbelastungen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>min. zweisitzig</td>
<td>36,0 kg/m²</td>
<td>36,2 kg/m²</td>
<td>36,2 kg/m²</td>
</tr>
<tr>
<td>max. zweisitzig</td>
<td>46,0 kg/m²</td>
<td>45,6 kg/m²</td>
<td>45,1 kg/m²</td>
</tr>
</tbody>
</table>

Zulässige Höchstgeschwindigkeit in starker Turbulenz

| VA | 180 |
| Va | Manövergeschwindigkeit | 180 |

Diese Geschwindigkeit darf bei starker Turbulenz nicht überschritten werden. Starke Turbulenz herrscht vor in Leewellenrotoren, Gitterwellen usw.

Oberhalb dieser Geschwindigkeit dürfen keine vollen oder abrupten Ruderausschläge ausgeführt werden, weil die Segelflugzeugstruktur dabei überlastet werden könnte.
Zulässige Höchstgeschwindigkeit f. das Betätigen der Flügelklappen (ggfs. unterschiedlich je nach Klappenstellung)

<table>
<thead>
<tr>
<th>VPE</th>
<th>WKL</th>
<th>WKL1=280</th>
<th>Diese Geschwindigkeiten dürfen bei der angegebenen Flügelklappenstellung nicht überschritten werden.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WK1=230</td>
<td>WK2=230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WK3=160</td>
<td>WK5=160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WK1=140</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zulässige Höchstgeschwindigkeit für den Windenstart

130

Diese Geschwindigkeit darf während des Winden- oder Kraftfahrzeugschlepps nicht überschritten werden.

Zulässige Höchstgeschwindigkeit für den Flugzeugschlepp

160

Diese Geschwindigkeit darf während des Flugzeugschlepps nicht überschritten werden.
2.7 Schwerpunkt

Die Grenzen der Flugschwerpunktlagen liegen bei:

- Vorder Grenze 0,21 m hinter BP
- Hinterer Grenze 0,49 m hinter BP

"BP" bedeutet in diesem Zusammenhang "Bezugspunkt" und ist mit der Flügelvorderkante an der Wurzelrippe identisch.

Ein Beispiel zur Schwerpunktlagerechnung befindet sich unter Abschnitt 6 im Wartungshandbuch der ASH 25 E.

2.8 Zugelassene Manöver

Dieser Motorsegler ist für normalen Segelflug und Motorbetrieb (Laftüchtigkeitsgruppe "Utility") zugelassen. Ein Eigenstart darf nicht durchgeführt werden.

2.9 Manöverlastvielfache

Höchstzulässige Abfanglastvielfache:
- Größtes positives Lastvielfaches $+5,3$
- Größtes negatives Lastvielfaches $-2,65$

bei einer Fluggeschwindigkeit von 180 km/h

Mit zunehmender Geschwindigkeit verringern sich diese auf:
- Größtes positives Lastvielfaches -4
- Größtes negatives Lastvielfaches $-1,5$

bei 280 km/h.
2.10 **Flugbesetzung**

2.11 **Betriebsarten**

Es dürfen Flüge nach VFR bei Tag durchgeführt werden. Mit entsprechender Ausrüstung (siehe Punkt 2.13) und ohne Wasserballast sowie unter Einhaltung geltender Bestimmungen, ist Wolkenflug zulässig.

2.12 **Kraftstoff**

Es muß ein Zweitaktgemisch mit einem Mischungsverhältnis von 1:50 getankt werden.

Fassungsvermögen der Kraftstoffbehälter:
- Rumpftank (Kunststoff) 8,5 Liter (oder Rumpftank aus Alu 5,5 Liter)
- je Flugeltank 15,0 Liter

Kraftstoffmengen insgesamt:
- mit Rumpftank (Kunststoff) 38,5 Liter
- mit Rumpftank aus Alu 35,5 Liter

2.3 Fahrtmessermarkierungen

Die folgende Tabelle nennt die Fahrtmessermarkierungen und die Bedeutung der Farben.

<table>
<thead>
<tr>
<th>Markierung</th>
<th>(IAS) Wert od. Bereich</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weißer Bogen</td>
<td>87 - 140</td>
<td>Betriebsbereich für positive Klappenausschläge</td>
</tr>
<tr>
<td>Grünener Bogen</td>
<td>88 - 180</td>
<td>Normaler Betriebsbereich (Flügelklappen neutral)</td>
</tr>
<tr>
<td>Gelber Bogen</td>
<td>180 - 280</td>
<td>In diesem Bereich darf bei starker Turbulenz nicht geöffnet und Manöver dürfen nur mit Vorsicht durchgeführt werden</td>
</tr>
<tr>
<td>Roter Strich</td>
<td>280</td>
<td>Zulässige Höchstgeschwindigkeit für alle Betriebsarten</td>
</tr>
<tr>
<td>Gelbes Dreieck</td>
<td>90</td>
<td>Anfluggeschwindigkeit bei Höchstmasse ohne Wasserballast</td>
</tr>
<tr>
<td>Blauer Strich</td>
<td>90</td>
<td>Geschwindigkeit des besten Steigens V_s</td>
</tr>
</tbody>
</table>
2.15 Hinweisschild für Betriebsgrenzen

Dieses Schild befindet sich im vorderen Führerraum und enthält die wichtigsten Massen- und Fluggeschwindigkeitsgrenzen

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Wert (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leermasse</td>
<td>750 kg</td>
</tr>
<tr>
<td>Nettomasse</td>
<td></td>
</tr>
<tr>
<td>Mäßigteilung im vorderen Sitz</td>
<td></td>
</tr>
<tr>
<td>Höchstabfahrt im Kopfstand</td>
<td></td>
</tr>
<tr>
<td>Höchstarbeit im Stehen</td>
<td></td>
</tr>
<tr>
<td>Höhefluggeschwindigkeit bei normalem Wetter</td>
<td>260 km/h</td>
</tr>
<tr>
<td>Mindestgeschwindigkeit</td>
<td>120 km/h</td>
</tr>
<tr>
<td>Windempfindlichkeit Kraftfahrzeug</td>
<td>100 km/h</td>
</tr>
<tr>
<td>Fluggrenze</td>
<td>160 km/h</td>
</tr>
<tr>
<td>Mindestvorschub für eine Vorteilflugformation</td>
<td>750 bis 900 mahn</td>
</tr>
<tr>
<td>Reibungskoeffizient</td>
<td>3,4 bis 3,6 bar</td>
</tr>
<tr>
<td>Spannweite</td>
<td>2,4 bis 2,5 bar</td>
</tr>
</tbody>
</table>

Niedrigere Mindestzuladung ohne Trimmballast in der Seitenflosse siehe Flughandbuch Seite 6.4

Abschnitt 4

4. Normale Betriebsverfahren
4.1 Einführung
4.2 Auf- und Abstützen
4.3 Tägliche Kontrolle
4.4 Vorflugkontrolle
4.5 Normalverfahren und empfohlene Geschwindigkeiten
4.5.1 Bedienung des Triebwerks
4.5.2 Windenstart
4.5.3 Kraftfahrzeugschleppstart
4.5.4 Flugzeugschleppstart
4.5.5 Freier Flug
4.5.6 Landeanflug
4.5.7 Landung
4.5.8 Flug mit Wasserballast
4.5.9 Flug in großer Höhe
4.5.10 Flug in Regen
4.1 Einführung

Der vorliegende Abschnitt beinhaltet Checklisten für die tägliche Kontrolle und die Vorflugkontrolle. Weiterhin beschreibt er die normalen Betriebsverfahren. Normale Verfahren im Zusammenhang mit Zusatzausrüstungen sind in Abschnitt 9 besprochen.

4.2 Auf- und Abrüsten

Anmerkung: Flügelerlängerungen mit Winglets erst nach der Flügelmontage gegen den abnehmbaren Randbogen austauschen.

1. Alle Bolzen und Buchsen sowie die Steuerungsverbindingen reinigen und fetten.

2. Den Rumpf aufstellen und senkrecht halten. Fahrwerksverriegelung kontrollieren, falls das Rad ausgefahren ist.

3. Wölhebel im Rumpf in Stellung 1 oder 2 bringen.

Anmerkung: Die Wölklappe muß freigängig bleiben.

5. Rechten Innenflügel einführen und Hauptbolzenachsen zum Fluchten bringen. Hauptbolzen eindrücken und sichern. Jetzt erst kann der oder können die Helfer die Flügel entlassen. Falls das Flugzeug
in den Innenflügeln befinden, so müssen diese für den Transport entleert werden.

2. Der nachfolgende Hinweis gilt nur für Höhenleit- werke mit Sicherungsfeder, also ohne Kugelschnap- per:

3. Falls das Höhenleitwerk sehr fest in seiner hin- teren Führung sitzt, gelingt die Demontage be- sser mit zwei Mann, die das Leitwerk am Randbogen wechselweise nach vorne drücken.

4. Vor der Demontage des Außenflügels müssen -falls vorhanden- die Flügelverlängerungen mit Winglet abgenommen und gegen den Randbogen ausgetauscht werden. Bei der Demontage des Außenflügels di- sen zunächst nur ca. 5 bis 10 cm aus dem Innenflügel herausziehen, um die WK-Stoßstange entkoppeln zu können.

5. Vor der Demontage der Innenflügel vom Rumpf nicht vergessen die Kraftstoffleitungen zu tren- nen!

4.3 Tägliche Kontrolle

Vor Aufnahme des Flugbetriebes muß das Flugzeug durch sorgfältige Kontrolle und Ruderprobe über- prüft werden; dies gilt auch für in der Halle abge- stellte Flugzeuge, da sie erfahrungsgemäß durch Rängierschäden und Kleintiere gefährdet sind.

prüfen. Nutzen auf Klappen und Flügel auf Frei- gängigkeit überprüfen.

- Flugelverlängerungen oder Randbogen richtig ange- baut und gesichert? Winglet unbeschädigt?

b) Bremsklappen: Zustand und Anschläge überprüfen. Verkniem beider Bremsklappen richtig?

c) Rumpf, besonders die Unterseite, auf Beschädigun- gen überprüfen.

d) Seiten- und Höhenleitwerk auf richtige Montage, Spiel und Beschädigung kontrollieren.

m) Druckabnahme in Seitenflosse: Ist die Düse richtig eingeschoben und dicht?

o) Gesamtdruckabnahme in der Lüftungsoffnung der Rumpfnase auf Sauberkeit überprüfen.

p) Statische Druckabnahmen in der Rumpfrohre auf Sauberkeit überprüfen.

Tägliche Kontrolle am ausgefahrenen Triebwerk

b) Die Drahtsicherung der oberen Motorbefestigung überprüfen. (Siehe hierzu auch Abschnitt 2.3.4 im Wartungshandbuch).

c) Durch Drücken gegen die Propellerachse von vorn, die Gummielemente der Motoraufhängung auf Risse im Gummikörper überprüfen.

d) Fangnägel und deren Befestigung im Motorraum überprüfen.

e) Befestigung des Schalldämpfers überprüfen. Die Federverbindungen können durch Rütteln am Schalldämpfer kontrolliert werden.

f) Schalldämpfer und Motorträger mit allen Teilen auf Anrisse kontrollieren.

g) Funktion von Gas, Luftpumpe, Propellerbremse

h) Verlaufen Bowdenzüge, Seile und Kraftstoffleitungen ohne Knick e?

i) Leitungen (besonders Kraftstoffleitungen) und Bauteile auf Scheuerstellen überprüfen.

j) Zündkabel und Kerzenstecker auf festen Sitz überprüfen.

a) Hauben öffnen und Haubennotabwurf überprüfen.

b) Sind die Hauptbolzen gesichert?

c) Anschlüsse der Querruder, Höhenruder und der Bremsklappen durch die Motordeckel im Rumpf und durch den Bremsklappenkasten überprüfen. Dazu wird das Triebwerk halb ausgefahren.

d) Cockpit und Steuerungsbereich nach losen Teilen und Fremdkörnern untersuchen.

e) Freigängigkeit und Betätigungskräfte der gesamten Steuerung überprüfen.

Volle Ausschläge geben und bei festgehaltenen Bedienhebeln die Steuerung belasten.

f) Reifen auf Zustand und Luftdruck überprüfen:

Hauptrad 3,5 bar
Heckrad 2,5 bar

g) Schleppkuppplungen auf Funktion und Zustand überprüfen. Ist die Kupplungsbedienung freigängig? Ausklinkprobe nicht vergessen!

h) Radbremse auf Funktion und Dichtigkeit überprüfen. Bei voll ausgefahrenen Bremsklappen muß am Handhebel der elastische Anschlag durch den Hauptzyylinder der Bremse fühlbar sein.

i) Flügelober- und Unterseite auf Beschädigungen überprüfen.

j) Flügelschlitze einschließlich Querruder: Zustand und Freigängigkeit (Rückschlitze) über-
4.5.5 Freier Flug

Gebrauch der Wölbklappen:

Die optimalen WK-Stellungen der einzelnen Geschwindigkeitsbereiche sind stark von der Flächenbelastung abhängig. Wie die Schaltpunkte von der jeweiligen Abflugmasse beeinflusst werden, kann dem Diagramm in Abschnitt 6.3.3 entnommen werden.

Da die Wölbklappensteuerung den Auftrieb des gesamten Flügels sehr direkt beeinflusst, erzeugt ein plötzliches, ruckartiges Betätigen der Wölbklappen ein Durchsacken oder Wegsteigen des Flugzeugs; dabei ist besonders in Bodennähe oder im Kreisflug mit anderen Segelflugzeugen Vorsicht geboten.

Im Kreisflug ist zu beachten, daß im Vergleich zum Geradeausflug bei gleicher Wölbklappenstellung die Mindestgeschwindigkeit ansteigt. Als Anhaltswerte sei eine Zunahme um 10% bei etwa

<table>
<thead>
<tr>
<th>Schwerpunkt-Kl.</th>
<th>WK</th>
<th>Sp und OR in die gleiche Richtung</th>
<th>Sp und OR entgegen- gewendet</th>
</tr>
</thead>
<tbody>
<tr>
<td>ganz hinten</td>
<td>3-5</td>
<td>Trudeln stationär</td>
<td>Trudeln stationär</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In der 25m-Version weit-</td>
<td>In der 25m-Version stei-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sentlich stieltes Trudeln u.</td>
<td>leres Trudeln und Übergang</td>
</tr>
<tr>
<td></td>
<td></td>
<td>zügiger Übergang</td>
<td>in eine Steilspirale</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in der Mitte</td>
<td>Trudeln mit Übergang in eine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-5</td>
<td>Steilspirale</td>
</tr>
<tr>
<td>ganz vor</td>
<td>3-5</td>
<td>1/2 Trudelbewegung, dann</td>
<td>Schiebeflugzustand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steilspirale</td>
<td></td>
</tr>
</tbody>
</table>

Aus dem Kreisflug eingeleitete Abkippen ist nicht wesentlich heftiger als aus dem Geradeausflug.

Das Trudelverhalten des Flugzeugs mit den 25,6m-Flügelverlängerungen und Winglets ist nicht wesentlich verändert gegenüber der 25m-Version ohne Winglets.

In der 25m-Version fällt das Trudeln eindeutig stieler aus und selbst in der hintersten Flugschwerpunktlage geht die Trudelbewegung nach einer Umdrehung in eine Steilspirale über.
4.5.6 Landeanflug

Rechtzeitig zu einer Landung entschließen und trotz guter Flugeistung spätestens bei 100 m über Grund die Wölbklappenstellung 4 oder 5 wählen und das Fahrwerk ausfahren.

Der Rest der Platzrunde wird mit etwa 90 km/h (gelbes Dreieck am Fahrtmessers) geflogen. Dabei ist der Motorsog auf 90 bis 100 km/h auszutragen. Bei Turbulenz ist entsprechend schneller anzuschweben.

Wichtiger Hinweis: Erst wenn man völlig sicher ist, die Schwellen der Landebahn im gerade Endanflug zu erreichen, wird die Landestellung L (+38°) des WK-Handhebels gerausert. Bei Fluggeschwindigkeiten über 100 km/h stiegen die Handkräfte zum Umrasten in Landestellung deutlich an. Aus diesem Grund wird dieser Umwölbvorgang bei Fluggeschwindigkeiten über 100 km/h nicht empfohlen. Die Handkräfte entstehen durch die starke positive Stellung der inneren Wölbklappen. Diese schlagen 38° nach unten aus, während die mittlere Klappe bei ±10° stehen bleibt und das äußere Querruder auf ±6° ausgeschält. Durch diese starke Verwindung des Flügels nimmt das Eigensinken, besonders bei Fluggeschwindigkeiten zwischen 120 und 130 km/h stark zu.

Durch eine Längsneigungsänderung (ziehen und drücken), kann also der Gleitwinkel in einen weiten Bereich variiert werden.

Zusätzlich können natürlich wie üblich auch die dop-
vor einer jeden nichtanerkannten Änderung an dem Flugzeug benachrichtigt wird. Damit wird sichergestellt, daß die Lufttüchtigkeit des Flugzeuges nicht beeinträchtigt wird.

8.4 Handhabung am Boden / Straßentransport

(1) Abstellen

Das Abstellen des Flugzeugs im Freien kann nur unter absehbar einwandfreien Wetterverhältnissen empfohlen werden. Es ist grundsätzlich zu erwägen, ob nicht das Verzerrn, Abdecken und das Reinigen des Flugzeugs vor dem nächsten Einsatz mehr Aufwand bedeutet als das Ab- und Aufstützen.

Zum Verzerrn der Flügel sind Scheren (z.B. aus dem Transportwagen) zu benutzen, die sicherstellen, daß die Flügelklappen nicht durch die Zurrseile belastet werden können. In der Randbogen der ASH 25 E können auf Wunsch Zurrösen eingebaut werden.

Anmerkung:

Bei längerem Abstellen im Hangar wird empfohlen, nur die Plexiglaushaube mit einem Staubschutz abzudecken, da die Staubschutzhüllen bei feuchter Witterung unnötig lange die Feuchtigkeit halten, welche die Fornhaltigkeit und sogar die Festigkeit aller
Faserverbundwerkstoffe beeinträchtigt. Längeres Abstellen mit Wasserballast ist deshalb auch nicht zulässig.
Beim Abstellen Rester der Bordverpflegung (Schokolade, Bonbons etc.) sorgfältig entfernen, da diese Erfahrungsgemäß Kleintiere anlocken, die Schäden im und am Flugzeug verursachen können.
Bei längeren Abstelten, auch im Hangar, sowie zum Transport sind die Flügelverlängerungen abzunehmen. Osen zum Festzurren gibt es nur für den abnehmbaren Randbogen.

(2) Straßentransport

Bei der Firma Alexander Schleicher GmbH sind Skizen für einen geschlossenen Transportwagen erhältlich sowie die Anschriften von Herstellern erprobter Transportwagen.

Wichtig ist in allen Fällen, daß die Flügel in gut angepaßten Scheren liegen oder aber an den Holzstummeln möglichst nahe an den Wurzelrippen gelagert werden.

Feste Punkte am Rumpf sind Hauptrad (Federung beachten!) und Heckrad: evtl. die Querkraftbolzen (Degenlager aus Kunststoff z. B. Nylon anfertigen!) und der Bereich unter dem Haubenbogen.

Für ein so hochwertiges Flugzeug kann ein offener Anhänger (auch mit Planenabdeckung) nicht empfohlen werden, sondern nur noch ein geschlossener Wagen mit Kunststoff-, Blech- oder Planenbauten, der in jedem Fall möglichst helle Oberflächen aufweisen und im Stand gut gelüftet sein muß, um hohe Temperaturen und hohe Luftfeuchte zu vermeiden.

Straßentransport mit Wasserballast und Kraftstoff

5.2.2 Oberziegeschwindigkeiten

Oberziegeschwindigkeiten in km/h IAS. (Angezeigte Werte)

<table>
<thead>
<tr>
<th>WK-Stellung</th>
<th>Flugmasse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>750 kg</td>
</tr>
<tr>
<td>WK 1</td>
<td>70</td>
</tr>
<tr>
<td>WK 2</td>
<td>76</td>
</tr>
<tr>
<td>WK 3</td>
<td>72</td>
</tr>
<tr>
<td>WK 4</td>
<td>70</td>
</tr>
<tr>
<td>WK 5</td>
<td>69</td>
</tr>
<tr>
<td>WK L</td>
<td>66</td>
</tr>
<tr>
<td>WK L + BK</td>
<td>68</td>
</tr>
</tbody>
</table>

1. Die angegebenen Geschwindigkeiten gelten für das aerodynamisch saubere Flugzeug. Durch die Flügelverlängerungen mit Winglets verändern sich die Oberziegeschwindigkeiten um ca. 1 km/h.

2. Die Oberzieheinstellung durch Schüttern des Leitwerks setzt 5 % über den Abkippgeschwindigkeiten bei hinteren SP-Lagen ein. Mit ausgefahrenem Trieber wird dies von den dort abgehenden Wirbeln überdeckt.

3. Ausfahren der Bremsklappen erhöht die Abkippgeschwindigkeiten im Geradeausflug um ca. 5 km/h.
Abschnitt 1

1. Beschreibung und technische Daten

1.1 Einführung

1.2 Beschreibung des Flugzeuges
 1.2.1 Flügel
 1.2.2 Rumpf
 1.2.3 Leitwerke und Klappen
 1.2.4 Triebwerk

1.3 Haupt- und Nebenstruktur

1.4 Technische Daten

1.2.2 Rumpf

Die Rumpfschale ist in Hybrid-Technik aufgebaut. Das Fasergemisch aus Kohle- und Aramidfaser ergibt eine leichte, steife Struktur, die auch in der Lage ist, die Piloten im Falle eines Unfalles zu schützen. Die zusätzliche Aussteifung im Cockpitbereich erhöht weiter die Sicherheit der Piloten. Um die Abstrahlung der UKW-Flugfunk-Anenne nicht zu beeinträchtigen, ist die Seitenflosse aus GFK-Hartschaum-Sandwich aufgebaut.

1.2.3 Leitwerke und Klappen

SFK = Synthetikfaserverstärkter Kunststoff

1.2.4 Triebwerk

1.3 Haupt- und Nebenstruktur
Zur Hauptstruktur zählen:
- Flügelholme und Wurzelrippen
- Flügelachsen
- Rumpffröhe ab Flügelanschlußbereich bis Seitenfl.
- Seitenflossen und Hohenleitwerksflossen
- alle Beschlags- und Steuerungsteile

Nebenstruktur sind:
- Ruder und Klappen
- Rumpf im Cockpitbereich

1.4 Technische Daten

Flügel
Spannweite 25,00 m 25,60 m 26,00 m
Flügeloberfläche 16,31 m² 16,46 m² 16,62 m²
Streckung 38,32 39,82 40,67
V-Stellung (Holobers.) 3,5°
Pfeilung (beide Innentrapeze) 0°
(äußeres Trapez) +0,8°
(Flügelverlängerung) +4,45° +4°
Winglethöhe 0,35 m 0,53 m
Wingletöffnung 0,05 m² 0,072m²
Wingletöffnung (Vorderkante) 38° 30°
Wölbklappenstellungen -9°, -5°, 0°, +6°, +8°, +38°

Profile M17 (14,38% Dicke) und
DU 84-132V3 an der Flügelspitze,
DU 86-084/18 am Winglet 25,6m
DU 98-125(100) M1 am Winglet 26m

1.1 Einführung

1.2 Beschreibung des Flugzeuges

1.2.1 Flügel
Transport am Boden

Die Flügel können an Holzstummel, Wurzelrippen und Randbögen getragen werden. Die Flügelverlängerungen mit Winglet vorher abnehmen und Randbögen montie-
ren!

Anmerkung: Flügel nicht an überstehenden Steuer-
stangen tragen!

2.12 Schleppkupplungen

Als Schwerpunktkupplung wird das Muster Tost
"Europa G 73" verwendet (Kennblatt-Nr. 60.230/2).
Als Austauschkupplung kann auch das Muster Tost
"Europa G 72" oder "Europa G 88" verwendet werden.
Als Flugzeugschleppkupplung wird das Muster Tost
"Europa E 75" verwendet (Kennblatt-Nr. 60.230/1).
Als Austauschkupplung kann auch das Muster Tost
"Europa E 72" oder "Europa E 85" verwendet werden.

Beim Austausch der Kupplungen ist darauf zu achten,
daß zur Verschraubung wieder die serienmäßigen
Schrauben der Festigkeitsklasse 12.9 eingesetzt
werden.

<table>
<thead>
<tr>
<th>Seitenruder</th>
<th>Höhenruder</th>
<th>Querruder</th>
<th>mittlere Flügelkappe</th>
<th>Höhlkappe</th>
</tr>
</thead>
<tbody>
<tr>
<td>445</td>
<td>161</td>
<td>72</td>
<td>142</td>
<td>151</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>zulässiges</th>
<th>Spiel (mm)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>1,5</td>
</tr>
<tr>
<td>2,5</td>
<td></td>
<td>2,5</td>
</tr>
</tbody>
</table>

Die Querruderverbindung zur Flügelverlängerung muss
spielfrei sein!

Hinweis: Der Abstand zu diesen Grenzwerten sollte
ausreichend groß sein, um ein Überschrei-
ten bis zur nächsten Jahresnachprüfung
möglichst ausschließen zu können.

Bei längerem Aufenthalt in extrem trocke-
inem Klima können die Sperhorlspante im
Humpf schrumpfen und Spiel erzeugen.
Verbleibt das Flugzeug in diesem Klima, so
ist durch Nachziehen der Verschraubung
dieses Spiel zu entfernen.
Abschnitt 5

5. Rudermassen und rücklastige Momente
 Schraubenanzugsmomente
5.1 Einführung
5.2 Tabelle der Rudermassen und Momente
5.3 Tabelle der Schraubenanzugsmomente

Abschnitt 6

6. Wägeverfahren und Schwerpunktermittlung
6.1 Einführung
6.2 Wägeverfahren
6.3 Wägebericht
6.4 Leermasse und Leermassenmoment
6.5 Masse der nichttragenden Teile
6.6 Beladeplan
6.7 Zuladung
6.8 Flugschwerpunkt und Pilotenhebelarme
6.1 Einführung
Im vorliegenden Abschnitt werden die Verfahren zur Bestimmung der Leermasse und des Leermassenmoments des Motorsreglers beschrieben. Darüber hinaus werden Verfahren zur Ermittlung von Schwerpunktlagen angegeben.

Eine Liste der vorhandenen Ausrüstung findet sich im jeweils letzten gültigen Prüfbericht.

Da die Schwerpunktlage großen Einfluß auf die sichere Durchführung von Flügen hat, sind die vorgegebenen Grenzen unbedingt einzuhalten.

Von den beiden Spannweitenversionen der ASH 25 E ist die 25m-Version hinsichtlich Flugmassenschwerpunktlage die kritischere! Die zusätzliche Masse der Flügelverlängerung mit Winglet liegt mittig im zulässigen Flugschwerpunktbereich und verändert diese nicht über die zulässigen Grenzen hinaus.

Besonders nach Reparaturen, nach Einbau zusätzlicher Ausrüstung und Lackierung ist darauf zu achten, daß der Leermassenverlauf innerhalb der zulässigen Grenzen bleibt. Ist dies nicht durch ein rechnerisches Verfahren durchzuführen, so muß eine Wägung durchgeführt werden.

6.2 Wägeverfahren
Bezugspunkt (BP) für die Schwerpunktwägung- und Rechnung ist die Flügelvorderkante an der Vurtelrippe.

Zur Wägung auf zwei Waagen wird das Flugzeug so ausgerichtet, daß die Oberkante der Rumpfröhre waagerecht ist.

5.1 Einführung

Zudem muß auch die Verteilung der Massenausgleiche über die Spannweite der Ruder und Klappen eingehalten werden. Trotz bei Reparaturen Änderungen des örtlichen, statischen Momentes auf, so ist ein Zusatzmassenausgleich an der selben Stelle anzubringen, mit dem das gleiche statische Moment wie im Zustand erreicht wird.

5.2 Tabelle der zulässigen Rudermassen und Momente
Die zulässigen Rudermassen und rückläufigen Momente sind:

<table>
<thead>
<tr>
<th>Masse [kg]</th>
<th>Moment [kgcm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seitenruder</td>
<td>2,25 – 3,58</td>
</tr>
<tr>
<td>Höhenruder u. Antrieb</td>
<td>2,16 – 2,76</td>
</tr>
<tr>
<td>Querruder</td>
<td>2,11 – 2,71</td>
</tr>
<tr>
<td>mittlere Flügelklappe</td>
<td>3,88 – 4,98</td>
</tr>
<tr>
<td>Wölbklappe</td>
<td>3,61 – 4,65</td>
</tr>
<tr>
<td>Querruder, Wingl. 25,6</td>
<td>0,14 – 0,19</td>
</tr>
<tr>
<td>Querruder, Wingl. 26,0</td>
<td>0,18 – 0,27</td>
</tr>
</tbody>
</table>
Das Flugzeug muss sich zur Vägung im folgenden Zustand befinden:

1. Fahrwerk ausgefahren und Wölbklappen in Stellung 3
2. Fluginstrumente eingebaut und Hauben geschlossen
3. mit Sitzkissen oder entsprechender Polsterung
4. mit Bordbuch und Flughandbuch
5. ohne evtl. Triebballast (Batterie) in der Seitenflügel
6. ohne eventuell ausbaubaren Trimmballast im Cockpit
7. ohne Fallschirme
8. Triebwerk eingefahren
9. nur die nicht ausfliessbare Kraftstoffmenge im Tank
10. Motorbatterie im Gepäckraum
11. Sauerstoffflasche ausgebaut
12. Randbögen der 25m-Version montiert

Hinweis:
Der innerhalb der s-förmigen Pedal-Seilführungen laufende Bereich des Seitenruder-Schneiders lässt sich durch Lösung der vorderen Seilbefestigung und Verschieben der Pedale vollständig prüfen.

In den Bereichen, in denen die Steuerseile oder Kupplungssseile gerade in Tectals-Rohren geführt sind, unterliegen die Seile keiner außerdientlichen Belastung, so dass hier im Gegenatz zu den oben beschriebenen Stellen keine außergewöhnliche Abnutzung entsteht und bei der Jahres- nachprüfung keine besondere Prüfung notwendig ist.

Hinweise zur Überprüfung der Steuer- und Kupplungsseile befinden sich im Handbuch "AIRCRAFT INSPECTION AND REPAIR" FAA AC 43.13-1A im Kapitel 4 unter Punkt 198
6.3 Wägbericht

Ober die Wägung ist ein Wägbericht mit zugehöriger Ausrüstungsliste anzufertigen (z.B. DKE-Vordruck), der in der Lebenslaufakte abgelegt ist.

6.4 Leermasse und Leerbeanspruchung

Leermasse und Leerbeanspruchung sind wie unter 6.2 beschrieben durch Wägung zu ermitteln oder können aus dem letztgültigen Prüfergebnis entnommen werden.

Anhand des nachfolgenden Diagrams Fig. 6.4-1 kann nun festgestellt werden, welche maximalen oder minimalen Zuladungen in den beiden Pilotensitzen möglich sind.

Für den Fall des herausnehmbaren Trimmballastes in der Seitenflosse, müssen die Angaben zu Beispiel 2b unter Abschnitt 6.6 bruchstückig werden.

And.Nr./Datum Sign. Autor Datum Seite Nr.
TMB 12 März 98 Heide TM 19 Feb. 91 Heide Okt. 89 Seite Nr.
7.4 6.4
ASHE 25 E Wartungshandbuch

Fig. 8.0-1 Schmierplan

- Diese Verbindungen vor jeder Montage säubern und fettten!
- Befestigungskapselfutter fettten!
- Schrauben G 3/8-24 mit MoS₂-Schmiermittel fettten!

And.Nr./Datum; Sig.
1942/12 März 98
Heide

Autor; Datum; Seite Nr.
Heide; OKT. 89; 8,3
Beladung des Gepäckraums max. 15 kg
Dieses Schild sitzt zwischen den Schultergurtbeschlägen an der Cockpitschwelle.

ZUERST AUSSENTANKS FÜLLEN!
Diese beiden Schilder sitzen an den Innenflügeln hinter den Wassereinfüllöffnungen.

ZUERST AUSSENTANKS FÜLLEN!
12.5 Fahrtmessermarkierungen

Weiß
87-140 km/h

Grün
88-180 km/h

Blau
100 km/h

Gelb
180-280 km/h

Rot
300 km/h

Fahrt
km/h
12.6 Wartungsanweisungen

Die erste Wartungsanweisung (Nr. A) beschreibt das Aufringen oder Erneuern der elastischen Abdeckbänder aus Kunststoff an den Ruder- oder Klappenschlitzen.